Hutchins课题组合作

中国科学院广州生物医药与健康研究院陈捷凯课题组与南方科技大学Andrew P.
Hutchins课题组合作,以小鼠胚胎干细胞为模型,揭示了基因组中转座元件的关键表观遗传调控机制,相关成果以Transposable
elements are regulated by context-specific patterns of chromatin marks
in mouse embryonic stem cells

为题于1月3日发表在国际学术期刊《自然-通讯》(Nature
Communications
)上。

9月15日,同济大学高绍荣实验室在《Nature》杂志在线发表题为 “Distinct
features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation
embryos”
的文章。首次从全基因组水平上揭示了小鼠植入前胚胎发育过程中的组蛋白H3K4me3和HK27me3修饰建立过程,并发现宽的H3K4me3修饰在植入前胚胎发育过程中对基因表达调控发挥重要作用。

人基因组中,总共含有30亿对碱基,但仅有极少部分能够编码成蛋白质,而接近一半的序列由转座子组成,小鼠基因组中也基本类似。转座子最早在玉米基因组中被发现,并证明通过“跳跃”调控玉米粒的颜色。转座子与常规的基因相比,由于其重复序列和多拷贝的特性,一直以来是科学研究的难点,直至目前科学家们关于转座子的功能仍知之甚少,所以转座子又被称为基因组中的“暗物质”。为了阻止这些转座元件在基因组中四处移动造成遗传突变,基因组进化出相应的表观遗传机制使转座子的跳跃活性受到抑制。在这之前科学家们知道H3K9me3、H3.3以及DNA甲基化修饰参与了特定类型转座子的调控,但基因组中有上千种不同的转座子分布在数百万个不同的拷贝上,对每一类特定转座子在具体分子机制上如何起作用之前的研究仍不清楚,这一研究为科学家们仍然在不断探索的这方面的知识做出了重要补充。

图片 1
随着精卵结合的发生,两种终末分化的生殖细胞的结合形成具有全能性的受精卵。随后,父源和母源的基因组要进行广泛的表观遗传重塑以适应胚胎发育的需要。这些表观修饰的变化是胚胎基因组激活及第一次细胞谱系分化的关键。组蛋白的转录后修饰直接调控了基因表达的激活和沉默。早期的研究中,利用抗体免疫荧光染色的方法发现,大部分的组蛋白修饰在植入前胚胎的发育过程中都发生了明显的变化。而一些调节组蛋白修饰的酶的异常表达或缺失会导致胚胎发育异常甚至植入前胚胎的死亡。这些研究证明组蛋白修饰的变化在早期胚胎发育的过程中起了很重要的作用。但是在植入前胚胎中这些组蛋白修饰在基因组上是如何分布及变化的,这些变化如何调控胚胎基因的表达以及第一次细胞命运的分化还是未知。
全面了解组蛋白修饰变化最好的方法是利用特定组蛋白修饰的抗体进行染色体免疫共沉淀并结合二代测序的ChIP-seq技术。但是由于植入前胚胎的细胞量很少,并且很难获得及培养,因此要得到传统的ChIP-seq技术需要的百万级的细胞数量是不可能的。在本研究中,高绍荣教授研究组利用并改进了最新发表的适用于低起始量细胞的ULI-NchIP
技术。利用极少量的细胞检测了小鼠植入前胚胎发育各个时期的组蛋白H3K4me3和H3K27me3修饰变化情况,这两个修饰分别对应基因的激活和沉默,这是目前已知的第一次系统地对小鼠植入前胚胎的组蛋白修饰进行全基因组水平上的检测。
通过分析检测到的数据,他们发现组蛋白H3K4me3和H3K27me3修饰的建立规律明显不同,H3K4me3修饰的建立更迅速,并且倾向于建立在CpG含量较高且DNA甲基化水平较低的启动子区域,而H3K27me3修饰的建立比较缓慢,并且倾向于建立在CpG含量较低的启动子区域。
研究中最重要的发现是,通过数据的分析,看到虽然H3K4me3修饰在2-细胞时期之后很少出现完全的建立和去除,但是H3K4me3信号的宽度却是在不断变化的,并且在早期胚胎的基因组中存在大量宽的H3K4me3信号。而这种宽的H3K4me3信号在细胞系以及普通的体细胞中含量都很低。重要的是,这些宽的H3K4me3信号跟基因的高表达以及细胞的发育命运都有很密切的关系,这预示着在早期胚胎中,H3K27me3等修饰还没有完全建立起来,细胞对基因表达的调控可能有着完全不同的表观遗传调控机制,这其中就包括依靠H3K4me3修饰的宽度的变化来调节基因表达。
该项研究还发现,在胚胎发育过程中,H3K4me3修饰的宽度是逐步变化的,很少出现宽的H3K4me3修饰直接的建立和去除,这使宽的H3K4me3修饰可以维持相对稳定,而在本研究中以及以前的研究结果中都发现宽的H3K4me3修饰更容易出现在特定细胞类型的重要调节因子上,这说明宽的H3K4me3修饰的存在使得即使有外界环境的干扰,胚胎中这些重要调节因子可以维持基因表达水平的稳定。而一项最近的研究成果也证明,强的组蛋白修饰信号的存在与稳定的mRNA表达密切相关,一些没有传统组蛋白修饰的区域则可以被迅速的激活或抑制。因此,宽的H3K4me3修饰在早期胚胎发育过程中作为一种可调节的表观遗传修饰精确调控了各个时期基因的表达,并且可能在更多的生理过程中发挥重要作用。
进一步的分析表明组蛋白去甲基化酶Kdm5b对H3K4me3信号长度的变化起很重要的调控作用,敲降Kdm5b会导致基因组上H3K4me3信号普遍的延长,以及胚胎发育的阻滞。另外,在对二价基因的探讨中,该研究发现早期胚胎中的二价基因含量很少并且不稳定。
总之,该研究成果第一次建立起了小鼠植入前胚胎发育过程中的组蛋白H3K4me3和H3K27me3修饰图谱,并发现了植入前胚胎发育特殊的表观遗传调控机制,该研究为进一步研究植入前胚胎发育以及早期细胞分化的表观遗传调控机制打开了一扇大门。
同济大学高绍荣教授实验室的刘晓雨博士、张勇教授实验室的博士生王晨飞以及高绍荣教授实验室的刘文强博士、博士生李静一为本文的共同第一作者。本文的其他作者还包括高绍荣教授实验室的李翀博士、技术员寇晓晨和赵艳红、陈嘉瑜博士、高海波博士以及王红老师。高绍荣教授、高亚威副教授和张勇教授为本文的共同通讯作者。该研究得到了国家自然科学基金委、科技部、上海市科委以及张江国家自主创新示范区专项发展资金的资助,在同济大学完成。
全文链接地址:

胚胎干细胞是科学家用来研究染色质动态变化与基因表达调控的常用的细胞模型,相比于分化的细胞,胚胎干细胞具有更强的可塑性,具备分化成生物体内成百上千种不同细胞类型的能力。科研人员通过分析小鼠胚胎干细胞中组蛋白修饰、DNA修饰以及染色开放程度的数据,发现大部分转座子序列上包含有多种不同的表观遗传修饰共同作用调控模式,这主要发生在由远古病毒感染残留的逆转座子上,又称为内源性逆转录病毒。该研究发现,部分ERV元件与之前报道的结果一样,受到H3K9me3和H3.3的调控。但大部分ERV元件除了这两种修饰以外,还存在多种如H4K20me3、H3K27me1、H2A.Z、H4R3me2等修饰,并且在某些ERV元件存在以上基因沉默相关修饰外,同时还存在H3K4me1、H3K4me3、H3K27ac、H3K56ac、H3K9K14ac等常规认为与基因激活相关的表观遗传修饰,该研究首次揭示了沉默型的表观遗传修饰和激活型的表观遗传修饰可以在同一个转座子上共存,研究团队将这类转座子命名为“多标转座子”。通过表观遗传修饰对应其表观遗传修饰酶,研究团队发现敲低Nocr2、Rnf2、Prmt5、Hdac5、Uhrf1、Rrp8、Ash2l、Kat5等的细胞中转座子元件变得更加活跃。该研究同时还发现,敲低Rnf2、Brd7、Hdac5的细胞激活了2细胞期特异性基因表达网络,说明这些表观遗传酶的敲低可能更利于胚胎干细胞往2细胞期重编程。

该研究系统揭示了小鼠胚胎干细胞中表观遗传修饰调控转座子活性的具体机制,并为胚胎干细胞向2细胞期重编程提供了新的思路。

图片 2

胚胎干细胞中转座子活性调控模型

You may also like...

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图