但该研究从算法角度为探索大脑机能提供了一种途径,类脑智能是人工智能的良药

类脑智能:让机器像人一样思考

虽然人工智能在一些方面的表现已超越了人类,但这不代表它真的很聪明。相反,很多时候它还很傻很天真,仍然需要向人脑学习。
近日,以类脑计算与人工智能为主题的香山科学会议在香港科技大学召开,来自脑科学、神经科学以及人工智能方向的30多位与会专家,讨论了如何将人工智能和脑计算相互融合、相互促进,实现从脑启发到通用人工智能的演进。
类脑智能是人工智能的良药
近年来,人工智能在发展过程中仍有一系列技术难题需要克服。比如,机器学习不灵活,需要大规模人工标注的高质量样本数据;训练模型需要很大的计算开销;同时人工智能仍然缺乏高级认知能力和举一反三的学习能力。
香港科技大学杨强教授表示,机器学习是人工智能领域的核心内容,但是,当前的机器学习与人脑的学习能力相比还存在显著差异,尤其在可解释性、推理能力、举一反三能力等方面,与人脑相比还存在明显差距。目前科学家们把更多期待投入到类脑智能上,他们认为智能技术可以借鉴脑科学和神经科学,对人脑认知神经机制的理解可能为新一代人工智能算法和器件的研发带来新启发,为信息智能领域的产业升级带来颠覆性的变革突破。
近年来,脑与神经科学、认知科学的进展使得人们在脑区、神经微环路、神经元等不同尺度观测的各种认知任务中,获取脑组织的部分活动数据已成为可能,获知人脑信息处理过程不再仅凭猜测,通过多学科交叉和实验研究获得的人脑工作机制更具可靠性。因此,脑科学有望为机器学习、类脑计算的突破提供借鉴。中国科学院神经科学研究所蒲慕明院士说。
信息处理要模拟人脑
所谓类脑计算是借鉴人脑存储处理信息的方式发展起来的新技术,它通过仿真、模拟和借鉴大脑生理结构和信息处理过程的装置、模型和方法,制造类脑计算机和类脑智能。
香港科技大学叶玉如院士表示,类脑智能是人工智能的一种新形态,也是人工智能重要的研究手段。人类的大脑被认为是最高级的生物智能系统,它具有感知、识别、学习、联想、记忆、推理等功能。大脑的这些功能与其结构存在着对应关系。类脑计算机就是以物理的形态实现这种对应关系,它以神经元作为基本计算和存储单元,利用神经元之间的突触连接传递信息,模拟神经突触的强度变化,其分布式的存储和计算单元直接相连构成大规模神经网络计算系统。
类脑计算系统是基于神经形态工程,借鉴人脑信息处理方式,打破冯诺依曼架构束缚,适于实时处理非结构化信息,具有学习能力的超低功耗新型计算系统。它是人工通用智能的基石,是智能机器人的核心,拥有极为广阔的应用前景。清华大学施路平说。
此外,北京邮电大学李德毅院士提出了反用驾驶脑的观点,用人工智能研究脑科学。在计算模型层面,将探索更多具有生物可行性的学习机制的人工神经网络算法。在网络架构层面,典型的人类认知行为将通过引入网络内的大脑样域和子域来建模,这些域将通过学习来协调、整合和修改。目标是在多个层面、理论上模拟大脑的机制和结构,开发一个更具有普遍性的AI以应对包括多任务,自学习和自适应等方面的挑战。来源:科技日报

机器人会不会拥有像人类一样的意识?10日,DeepMind团队在《自然》上发表的一篇论文在AI和神经科学领域引起关注:其最新研发出的一个AI程序具有类似哺乳动物一样的寻路能力,类似大脑中网格细胞的工作原理。

对于大脑的借鉴和研究,一直是人工智能发展的一个方向,而实现具有人类意识的人工智能更是人类长久以来的目标。DeepMind这项研究成果借鉴了大脑中的部分机能,但它仍是对于单一机能的模仿。可以说,现在的人工智能可以战胜顶级围棋选手,却无法像婴儿一样探索世界。

在AI领域有一个叫做“类脑智能”的研究方向,想让机器像人类一样思考。虽然目前专家们对于DeepMind的最新成果是否属于类脑智能研究看法不一,但该研究从算法角度为探索大脑机能提供了一种途径。目前,类脑智能研究的进展状况如何?有何待攻克的难点?科技日报记者为此采访了相关研究专家。

目标:使机器具有人类认知能力

从IBM的“深蓝”系统击败国际象棋世界冠军卡斯帕罗夫,到谷歌的AlphaGo战胜人类顶级围棋选手,上述所有的突破都仅是智能系统从某个视角、在某个特定领域接近、达到或超过人类智能,而相关的理论、算法与系统很难推广到其他领域,用于解决其他类型的问题。在人工智能学界,有一条著名的莫拉维克悖论,讲的是要让电脑同成人下棋是非常容易的,但要让电脑像一岁孩子一样感知和行动,却相当困难。AlphaGo能击败世界顶尖围棋高手,却无法像孩子一样探索世界。

至今为止,还没有任何一个通用智能系统能接近人类水平。“现有人工智能系统通用性较差,与其计算理论基础和系统设计原理有密不可分的关系。”中国科学院自动化研究所类脑智能研究中心副主任曾毅研究员告诉科技日报记者,图灵机模型取决于人对物理世界的认知程度,因此人限定了机器描述问题、解决问题的程度。冯:诺依曼体系结构是存储程序式计算,程序也是预先设定好的,无法根据外界的变化和需求的变化进行自我演化。而我们的大脑却是一个出色的、能够长时间稳定工作的通用智能系统,不仅能举一反三,处理视觉、听觉、语言、学习、推理、决策、规划等各类问题,还可以在学习和发育过程中不断自适应和进化。

曾毅指出,类脑智能以计算建模为手段,受脑结构与机制、认知行为机制启发,企图通过软硬件协同实现机器智能。类脑智能系统在信息处理机制上“类脑”,认知行为和智能水平上“类人”,目标是使机器实现人类具有的多种认知能力及其协同机制,最终达到或超越人类智能水平。

难点:对大脑的认知有限

中科院脑科学与智能技术卓越创新中心核心骨干、中国科学技术大学毕国强教授认为,目前类脑智能研发的核心难点是我们对脑的结构和功能原理了解还很不够。

人类的大脑重约1.4公斤,大脑皮层有上百亿个神经元,每个神经元又包含数个到数万个分支,构成庞大精细的神经网络。大脑正是通过这种超大规模的神经网络系统处理信息的,但这个网络的线路图极为复杂,而且其中的神经元以及突触联结有很多不同的类型。以现在的技术真正描绘出全面完整的线路图,需要难以想象的大量工作。

“现阶段,我们可以在没有完全理解大脑原理时开始建立简化的类脑模型,来实现一些‘类智能’的功能。”毕国强介绍,现在的人工神经网络模型包括深度神经网络模仿了生物神经网络的一些最基本特性,并在处理分类识别的问题方面取得了巨大成功,但这些“简单”网络在效率、功耗、以及通用性等方面有根本的局限,看来没有办法产生真正意义的智能。

“现阶段的一个重点方向是发展和应用新技术,包括现有的人工神经网络等机器学习技术,来推进对大脑网络结构以及学习规则的生物学研究,积累大量的数据并理解其中的原理。”毕国强说,与此同时,通过发展新的软硬件技术、整合新的脑结构和工作原理的细节来尝试提升类脑智能技术的能力,而这再反过来又促进脑研究。通过这样一个正反馈迭代过程,也许我们可以在可见的将来实现下一个突破。

布局:国内外发展水平几乎同步

不可否认,我们对于大脑的探索还处于非常初级的阶段。曾毅介绍,总体而言,经过上百年的研究,人们对于脑信息处理机制的认识仍然比较初步。在这样的背景下,2016年,中国正式提出了“脑科学与类脑科学研究”,它作为连接脑科学和信息科学的桥梁,将极大推动人工通用智能技术的发展。此外,多所高校都成立了类脑智能研究机构,开展类脑智能研究。如清华大学于2014年成立的类脑计算研究中心,中国科学院自动化研究所于2015年成立的类脑智能研究中心,北京大学成立的脑科学与类脑研究中心,上海交通大学成立的仿脑计算与机器智能研究中心等。

目前,清华大学类脑计算研究中心已经研发出了具有自主知识产权的类脑计算芯片、软件工具链;中国科学院自动化研究所开发出了类脑认知引擎平台,具备哺乳动物脑模拟的能力,并在智能机器人上取得了多感觉融合、类脑学习与决策等多种应用,以及全球首个以类脑方式通过镜像测试的机器人等。

“我们现在类脑计算方面基本上和国外差不多。”谈及国内的研究进展,清华大学类脑计算研究中心主任施路平教授告诉科技日报记者,现在大家都还处于前期探索发展阶段。

188金宝搏,“具体哪个应用先突破很难说。”施路平说,未来的类脑智能研究在应用方面具有很多可能性,但在哪个领域率先突破还不确定。

特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

You may also like...

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图